

Transplant Immunology

Josh Levitsky, MD, MS
Professor of Medicine
Division of Gastroenterology and Hepatology
Northwestern University Feinberg School of Medicine

4

Transplant Immunology

- Innate and Adaptive Immune System
- Immune Response
- Tolerance

Main Concepts

 Innate immune activation at transplant (APC) stimulates adaptive immunity (T/B cells) which promotes alloreactivity over tolerance

Histocompatibility genes give rise to MHC

MHC genes encode alloantigens known as HLAs (cell surface) {Class I and II}

 MHC's role is to present fragments of foreign antigens as complexes {Class II}

 MHC are membrané associated and present to antigenspecific T Cells

 Deletion of alloreactive lymphocyte clones is a critical step in the development of long term liver transplant tolerance

Good Review: Rosen HR. Gastroenterology May 2008, 134 (6): 1789-1801

Immune Cells

- Innate (first line of defense, no memory, same response each time, non-specific)
 - Polys (PMNs, eos, baso)
 - Monocyte/Macrophage
 - NK (NKT)
 - DC

- Adaptive (effector, helper, memory; increased response every time, specific)
 - Lymphocytes
 - Cellular Immunity
 - CD4+ T helper (class II MHC)
 - CD8+ T cytotoxic (class I MHC)
 - Humoral Immunity
 - · B cells
 - Plasma Cells

Types of Immune Response

- Hyperacute (preformed ABO Abs)
- Acute (T cell-mediated (TCMR); HLA Abs may add insult to injury)
- Chronic: fibrosis + vasculopathy mix of TCMR/AMR

Liver allograft antibody-mediated rejection and the role of the 'two-hit hypothesis'

Tolerance

- Immunological Tolerance: Absence of immune reactivity toward specific antigens but preservation of immunity against foreign antigens, in the absence of ongoing IS
- Operational tolerance: clinical circumstance in which graft function is stable without rejection in the absence of IS
- Prope (almost) tolerance: Minimal IS with stable graft function ("as little as possible without rejection")

Regulatory T cells (Tregs)

- Naturally produced in the thymus and induced in the periphery to control effector responses to autoand allo-antigens
- Require TCR interaction and IL-2 for proliferation
- Characteristically express:
 - High levels of CD25 (IL2 receptor)
 - Low CD127 (IL7 receptor)
 - FOXP3
 - TSDR (demethylated)

Published Immunosuppression Withdrawal Studies

Table 1

Published immunosuppression withdrawal studies (≥10 subjects enrolled).

Center (# subjects)	Adult or Pediatric	DD or LD LT	HCV + included?	Age at LT or study (years)	Time from LT to Weaning (years)	Biopsy: Pre-/Post- Withdrawal		Tolerant N (%)
						Pre	Post	<u> </u>
Single Center								
Pittsburgh (n = 95) [22]	Both	DD	Y	-	8.4 ± 4.7	Y	N	18 (19%)
London $(n = 18)$ [23]	Adult	DD	Y	40.2 ± 12.7	7 (5 – 1 1)			2 (11%)
Kyoto (n = 115) [24]	Pediatric	LD	_	-	> 2 per protocol	N	N	49 (42%)
Murcia (n = 20) [$26,71$]	Adult	DD	N	47.7 ± 9.5	3.4 ± 2.2	Y	N	8 (40%)
Rome (n = 34) $[27,28]$	Adult	DD	Y (only)	62 ± 5.9	5.3 ± 1.7	Y	Y	7 (20%)
New Orleans (n = 18) [29]	Adult	DD	Y	-	> 0.5 per protocol	N	N	1 (6%)
Winnipeg $(n = 26)$ [30]	Adult	DD	_	53.7 ± 14.1	4.6 ± 1.8	Y	Y	11 (42%)
Miami [∞] (n = 104) [32]	Adult	DD	Y	48.7 ± 3.2	4.1 ± 0.3	N	N	23 (22%)
Sapporo $^{\#}$ (n = 10) [37]	Adult	LD	N	55.2 ± 6.1	> 0.5 per protocol	Y	Y	7 (70%)
Pamplona (n = 24) [35]	Adult	DD	N	65 (60-70)	9.3 (6-13.3)	Y	N	15 (63%)
Taipei (n = 16) [36]	Pediatric	Both	Y	4.0 ± 4.8	7.8 ± 5.4	Y	Y	5 (31%)
Palo Alto (n = 38) [72]	Pediatric	Both	N	1.8 ± 2.8	2.9 ± 3.5	N	N	17 (45%)
Multi-Center								
U.S. $(n = 20)$ [33,38]	Pediatric	LD	N	8.5 (IQR 6.4-10.7)	7.9 (IQR 5.9-12)	Y	Y	12 (60%)
Spain ($n = 102$) [34,70]	Adult	DD	Y	47 ± 10	8.7 ± 3.9	Y	Y	41 (40%)

Levitsky, Feng. Human Immunol 2018 Newton, Levitsky. Current Immunol Reports 2016

Tolerance in LT

- In very select groups, can achieve tolerance in >50% with simple weaning
- Factors associated with IS withdrawal success
 - · Late withdrawal in older recipients
 - Less inflammation and lower C4d on pre-withdrawal bx
- O What can we learn?
 - Biopsies are important pre- and post-weaning
 - Do this late, but not too late when the impact of IS has already occurred

