

NAFLD and Liver Transplantation

Zobair M Younossi MD, MPH, FACP, FAASLD, AGAF, FACG

President, Inova Medicine Services, Inova Health System Chairman, Clinical Research, Inova Health System Chairman and Professor of Medicine, Inova Fairfax Hospital, Falls Church, Virginia, United Sates

Research funding and/or consultant: Gilead Sciences, Intercept, BMS, NovoNordisk, Viking, Terns, Siemens, Shionogi, Abbvie, Merck, Abbott, Axcella and Novartis.

Global Clinical Burden of NAFLD

Trends in Incidence Rates (GBD 2012-2017)

Trends in Mortality Rates (GBD 2012-2017)

PAASLD Serum Biomarker for Fibrosis in NAFLD The Enhanced Liver Fibrosis Test (ELF) Components 12.00-• Procollagen III N-terminal peptide (PIIINP) 11.00-• Hyaluronic acid (HA) • Tissue inhibitor of metalloproteinase 1 (TIMP1) H ELF PPV (%) NPV (%) Fibrosis S (%) Sp (%) È 9.00-9.93 57 90 88 64 Significant fibrosis ≥ 2 88 61 10.09 100 100 94 93 10.18 70 99 8.00-10.30 82 100 100 97 Advanced fibrosis ≥ 3 10.51 100 98 80 100 2 10.78 50 99 80 96 ò 1a 1b 1c 3 4 Fibrosis stage (modified Brunt) 11.56 25 100 100 95 Patients with NASH and bridging fibrosis (n=219) or compensated cirrhosis (n=258) enrolled in two Phase 2b SIM studies were used to • show that ELF can predict progression to cirrhosis and development of liver-related clinical events • Optimal threshold of baseline ELF: 9.76 (sensitivity 77%, specificity 66%)

Nobilli V et al. Gastroenterology 2009, Loomba R EASL 2019

Radiologic Tests	To M	easure Liver Stiffness	PAASL	D
Technique		Visualize liver		
Transient elastography (TE)		 Liver stiffness expressed in kPa; correlates with liver fibrosis stage Controlled Attenuation Parameter (CAP™) expressed in dB/meter Accurate in detecting advanced fibrosis Predicts risk of decompensation Correlates well with portal pressure Most widely used 		Fibrosis Severty Median LSM (range) Without F3-F4 6.6 kPa fibrosis (5.3-8.9) With F3-F4 14.4 kPa (12.1- 24.3) 24.3)
Acoustic radiation force impulse (ARFI)	US	 Employs high intensity acoustic beam to mechanically excite tissue and monitor tissue displacement response No need for an external compression Degree of displacement is interpreted into degree of lightness and darkness 		F1 – 1.24 m/s F2 – 1.48 m/s F3 – 1.61 m/s F4 – 1.75 m/s
Shear wave elastography (SWE)	US	 Shear waves are generated from acoustic pulses forced at five different tissue depth levels and SW velocity estimated by ultrafast Doppler-like acquisition of 5,000 frames/sec. SW is converted to tissue stiffness as kilopascals 		Median Values F0 6.93 kPa F1 7.7 kPa F2 9.6 kPa F3 13.95 kPa F4 23.73 kPa
Magnetic resonance elastography (MRE)	MR	 Most accurate of the imaging modalities Costly, no point-of-care access MRI Methods to Estimate Proton Density Fat Fraction MRI-PDFF shown to have high correlation to morphometric fat³ 	superstant state fibrois State	Stiffness cutoff: 3.63 kPa - Sensitivity 0.86 - Specificity 0.91 AUC for advanced fibrosis: 0.924

Sequential Tests for Advanced Fibrosis in NASH CAASLD Meta-Analysis of NITs to Distinguish Simple Steatosis From NASH In 122 studies, 219 blood markers (single markers and scoring systems) were evaluated In meta-analysis, no test reliably differentiated simple stetaosis from NASH with a high level of • pooled sensitivity and specificity Verhaegh P et al, Clin Gastro Hepatol 2018;16:837-61 Study of baseline data from STELLAR trials (N = 3202) to diagnose F3/F4 fibrosis 0 • Single tests (either NFS, FIB-4, ELF, or FibroScan) led to up to 50% indeterminate results Sequential tests (FIB-4, then ELF or FibroScan) led to up to 24% indeterminate results Outcome With Sequential Tests,% (95% FIB-4, then ELF (N = 3180) FIB-4, then FS (N = 3141) CI)* Prevalence of F3/F4 71 71 Sensitivity 69 (67 to 71) 77 (75 to 78) Specificity 92 (90 to 94) 89 (87 to 91) PPV 96 (94 to 97) 95 (93 to 96) NPV 55 (53 to 58) 60 (58 to 63) Misclassified 24 (23 to 26) 20 (18 to 21)

Anstee. Hepatology. 2019;70:1521

Liver Transplantation for NASH: Survival of Liver Transplant Recipients

PAASLD

- United Network for Organ Sharing and Organ Procurement and Transplantation (UNOS/OPTN) 2003– 2014 database
- On MVA, NASH had significantly higher posttransplant survival compared to patients with HCV (HR 0.75; 95% CI 0.71–0.79; P=.001)
- ALD also had significantly better post-transplant survival compared to HCV patients (HR 0.80; 95% CI 0.76–0.84; P=.001).
- Patients with underlying diabetes had significantly lower post-transplant survival (diabetes = HR 1.30; 95% Cl 1.25–1.36; P=.001).
- Concurrent diagnosis of HCC was also associated with significantly lower posttransplant outcomes (HR 1.25; 95% CI 1.19–1.32; P=.001)

Cholankeril, G., Wong, R.J., Hu, M. et al. Dig Dis Sci 62, 2915–2922

21

© 2020 AMERICAN ASSOCIATION FOR THE STUDY OF LIVER DISEASES WWW.AASLD.ORG

Author, year	Country, Period	Population, sample size	MELD score	Patient survival, %			Leading cause of death	
				1 yr	3 yr	5 yr		
Malik, 2009	US single center 1997–2008	NASH = 98	17	79%	74%	72%	Infections: 57% CV: 21%	
Yalamanchilli 2010	US single center 1986–2004	NASH = 18, CC = 239	-	85%	-	71%	CV: 21%, Malignancies,18%, Infections: 15%	
Bhagat 2009	US single center 1997–2007	NASH = 71	-	82%	79%	75%	Infections: 53% CV: 26%	
Barritt, 2011	US single center 2004–2007	NASH = 21	23	76%	76%	-	Infections: 20% CV: 20%	
Houlihan, 2011	Israel, single center 2000–2008	NASH = 48	15	88%	-	82%	CV events, sepsis	
Park, 2011	US single center 1998–2008	NASH = 9	13	78%	-	-	n.r.	
Charlton, 2011	US, SRTR registry 2001–2009	NASH = 1840	-	84%	78%		No accurate information on causes of death or graft loss	
Agopian, 2012	US single center 2002–2011	NASH = 144	33	84%	75%	70%	n.r.	
Reddy, 2012	US single center 2000–2010	NASH-HCC (LT) = 20	9	-	83%	-	Liver failure. Similar overall survival in patients with NASH and HCV/ALD-related HCC	
Wagner, 2012	US single center 1993–2010	NASH = 115	24	81%	73%	60%	Infections: 11% CV events: 9%	
Kennedy 2012	US single center 1999–2009	NASH = 129	23	90%	88%	85%	Infections: 38% CV events: 19%	
Afzali, 2012	US, UNOS 1997–2010	NASH = 1810; CC = 3843.	21	87%	81%	75%	Primary cause of deathunknown in 25% of the cases CV events: 19%	

2016;65(6):1245-1257. doi:10.1016/j.jhep.2016.07.033

PAASLD

NAFLD Post Liver Transplantation: Recurrent, de novo NAFLD and advanced fibrosis

Study	Population, N	Time after LT	NAFLD	NASH	Fibrosis	Comments
Contos 2001	NASH&CC N = 27	1 year	52%	11%	≥F3: 4%	Risk of allograft steatosis: at 5 years 100% Recurrent NASH developed later than fatty liver alone. Cumulative dose of steroids correlated with time to NAFLD development.
Charlton 2001	NASH N = 15	1 year	60%	33%	≥F2: 33%	Cirrhosis developed in 12.5% of patients. 1 patient required re-transplantation for graft failure after 27 months.
Ong 2001	CC N = 51	2 years	25.4%	16%	≥F3:4%	Bridging fibrosis occurred in patients with post LT NASH.
Se0 2007	Non-NAFLD CLD N = 68	2 years	18%	9%	-	Increase of BMI of >10% was associated with post LT NAFLD
Bhagat 2009	NASH N = 64	>6 months	-	33%	-	No cirrhosis or re-transplantation because of recurrent disease. 24% of patients developed graft failure over follow-up.
Malik 2009	NASH N = 98	5 years	-	25%	-	In NASH group were re-transplanted within 60 days after LT.
Yalamanchili 2010	NASH & CC N= 257	5 years	31%	4%	≥F3: 5%/5 yrs 10% at 10 yrs	Advanced fibrosis was more frequent amount those with post LT NASH (31%) than simple steatosis (6%)
Dumortier 2010	Non-NAFLD CLD N = 421	>6 months	31%	5.3%	≥F3: 2.25%	Most of the patients (52%) had grade 1 steatosis. The evolution of NAFLD during follow-up was: regression (48%), stability (22%), progression (30%). PTMS and liver graft steatosis were independent predictors of de novo NAFLD.
Duseja 2011	NASH or CC N = 88	1 year	39%	28%	≥F2: 9%	Only 9% of recurrent NAFLD had NAS ≥5. NAFLD recurrence was associated with increased risk for CV disease and correlated with post-transplant BMI, post LT TG levels and corricosteroids dose at 6 month.
El Attrache 2012	NASH7CC N = 83	1.5 years	-	24%	≥F3: 3.6%	The recurrence rate was significantly higher amoung patients with PTMS (34% vs. 13% in patients without MS). 3 patients were re-transplanted secondary to graft failure from NASH recurrence.
Kim 2014	Non-NAFLD CLD N = 156	>1 year	27.1%	6.7%	F2: 4.4%	Obesity and donor graft steatosis were independent predictors for post LT NAFLD.
	• 5-33%	2 years: % recurrence c recurrence of advanced fibro	NASH	ost-LT		

Clinical Issues in Patients with NASH and LT

PAASLD

• CV and CKD Risks:

- Liver transplant candidates with NASH are at high risk of developing CV events before and after LT
- Accumulation of CV risk factors should be carefully assessed by transplant team (cardiologists and anesthesiologists)
- Patients with Child A/B NASH cirrhosis and CV comorbidities can be considered for management of dyslipidemia and CV risk
- NASH is an independent risk factor for pre and post-LT renal dysfunction; appropriate screening and management of kidney disease is highly recommended in this patient population

Management of Metabolic Comorbidities:

- A multidisciplinary approach is recommended to establish a risk minimization plan
- Appropriate screening for hypertension, diabetes, and dyslipidemia is recommended in NASH-patients considered for LT and medical optimization is strongly recommended
- Post-LT moderate exercise is recommended with the dual objective of losing weight and improving muscle mass

Modified from Tsochatzis E et al. Transplantation 2019;103: 45-56)

27

© 2020 AMERICAN ASSOCIATION FOR THE STUDY OF LIVER DISEASES WWW.AASLD.ORG

