

Objective

 Discuss the immediate post-operative and longterm management of liver transplant recipients

General pearls

- Liver transplant patients with infections
 - are often sicker than they look
 - often have more extensive disease than is apparent
 - may require longer treatment than others
 - may have unusual infections

Aspergillus

Clinical

- Colonization
- Allergic bronchopulmonary aspergillosis (ABPA)
- Aspergilloma (fungus ball)
- Invasive pulmonary aspergillosis (immunocompromised)
 - Sinus
 - Lung (nodules)

Aspergillus rhinocerebral disease

Aspergillus

Diagnosis

- Risk factors: immunocompromised
- Radiology: CXR, CT chest with nodules
- Non-culture tests: Galactomanan (Antigen) assay
- Pathology. Biopsy: septate hyphae, acute angle branching
- Microbiology (cultures)

Multiple pulmonary nodules

Aspergillus

Diagnosis

- Risk factors: immunocompromised
- Radiology: CXR, CT chest with nodules
- Non-culture tests: Galactomanan (Antigen) assay
- Pathology. Biopsy: septate hyphae, acute angle branching
- Microbiology (cultures)

N=160	Sensitivity	Specificity
Serum	47	93
BAL	85	100

Becker et al, Br J Haematology, 2003; 121:448 D'Haese J et al, J Clin Microbiol, 2012; %0:1258

Aspergillus

Diagnosis

- Risk factors: immunocompromised
- Radiology: CXR, CT chest with nodules
- Non-culture tests: Galactomanan (Antigen) assay
- Pathology. Biopsy: septate hyphae, acute angle branching
- Microbiology (cultures)

Hyphae, plate colonies and conidia

Aspergillus

Treatment

- Treatment
 - Voriconazole
 - ±Echinocandin
 - Isavuconazole
 - ±Echinocandin

Voriconazle vs. Amphotericin B Herbrecht et al. NEJM 2002: 347

Aspergillus

Treatment

- Treatment
 - Voriconazole
 - ±Echinocandin
 - Isavuconazole
 - ±Echinocandin

Voriconazle vs. Isavuconazole Maertens JA et al. Lancet 2015 Dec 9.

Fungus

Organ Transplanted	Incidence (%)	
Liver	7-42	
	(most candida)	
Pancreas	18-38	
Heart-Lung/Lung	15-36	
Heart	5-32	
Kidney	1-14	

Esophageal candidiasis

Singh, CID 2000:31 Paya, CID 1993:16

Fungus

Trends

- Spectrum of fungus is changing dramatically:
 - → Aspergillus infections 70%
 - Prior studies in 1990s: 98%
 - Non-Aspergillus mold infections 30%
 - Scedosporium, Fusarium, Zycomycetes, Phaeohypomycetes
 - Prior studies in 1990s: 2%

Voriconazole available

Singh et al, Transplantation 2002:73

Kontoyiannis et al, JID, 2005

Lum et al, Transpl Infect Dis 2020

Case

- 57 year-old female s/p liver transplant recently treated for rejection with thymoglobulin presents with DKA and L eye proptosis
- Biopsy shows non-septate hyphae at 90°
- Diagnosis?
- Treatment?

Case

- 57 year-old female s/p liver transplant recently treated for rejection with thymoglobulin presents with DKA and L eye proptosis
- Biopsy shows non-septate hyphae at 90°
- Diagnosis? Mucormycosis
- Treatment? Surgery & Ampho

Aspergillus (left) vs Mucor (right)

CMV

- Most important infection in SOT recipients
- Infects 60-100% of humans by adulthood
- Immunocompetent hosts: 1° infection is often asymptomatic, virus then remains latent
- In SOT recipients infection is due to
 - 1° infection from donor graft D+/R-
 - Reactivation in setting of immunosuppression (esp. T cell depleting agents)

Chest CT showing diffuse ground glass opacities

CMV

Clinical

	PCR	Clinical	
Asymptomatic CMV viremia	+	No symptoms	
CMV syndrome	+	Fever, malaise, myelosuppression	
CMV with end-organ disease	+	Pneumonia, hepatitis, colitis, retinitis, CNS	
Compartmentalized CMV disease*	-	Pathologic evidence of end- organ disease	0

*Consider colonoscopy in high-risk patient with negative CMV PCR who is having diarrhea to r/o compartmentalized CMV disease

CMV

Diagnosis

- Viral culture
 - Slow, ♥Specificity
- Serology
 - Detects antibody
 - CMV risk assessment pre-transplant
 - Highest risk D+/R-
- PCR
 - Detects DNA
 - Fast, ↑Sensitivity (but ♥specificity if low VL)
- Histology
 - Sensitive and specific

"Owl's eyes" inclusion bodies of CMV

CMV

Treatment

- What kind of CMV? Asymptomatic viremia? CMV syndrome? Organ disease?
- · In general:
 - Start with valganciclovir 900 BID (induction)
 - IV ganciclovir if severe or if bad GI disease
 - Minimum 2 weeks (3 weeks for GI) if PCR undetectable
 - Cidofovir or foscarnet if resistant CMV
- Nitpicky pearls:
 - Cutoff for treating asymptomatic viremia: 1500 IU/mL
 - No routine secondary prophylaxis. Can monitor high-risk patients x 3 months (pre-emptive)

Razonable R et al, Clin Transplant 2019:33

CMV

Prevention

Focus on D+R- for CMV prophylaxis

Risk	D	R	% Symptomatic Disease*
High	+	-	60%
Mod	+		10-30% , up to 50% with ALA**
Low	-	-	0-4%

D Donor CMV Ab, R Recipient CMV Ab
*Incidence of symptomatic disease if no prophylaxis
**Anti-lymphocyte antibodies

And for 6 months

Humar A et al, 2010, Am J Transplant. 2010 May;10(5):1228-37

Bonus Case

- 40 year-old male 3 months s/p liver transplant in Asia (Hep B hepatocellular CA) on tacrolimus, mycophenolate and prednisone presenting with persistent ↑LFTs
- Serology and blood PCR negative for EBV, CMV, HSV, HBV, HCV, parvovirus, HHV-6
- Biopsy shows moderate acute cellular rejection vs hepatitis with no viral inclusions
- · Diagnosis?
- · Treatment?

Marked portal inflammation with mixed lymphoplasmacytic infiltrate

Bonus Case

- 40 year-old male 3 months s/p liver transplant in Asia (Hep B hepatocellular CA) on tacrolimus, mycophenolate and prednisone presenting with persistent ↑LFTs
- Serology and blood PCR negative for EBV, CMV, HSV, HBV, HCV, parvovirus, HHV-6
- Biopsy shows moderate acute cellular rejection vs hepatitis with no viral inclusions
- Diagnosis? Hepatitis E infection

Marked portal inflammation with mixed lymphoplasmacytic infiltrate

HEV

- Chronic HEV almost always in immunocompromised
- 50-70% of those affected posttransplant develop chronic HEV
- Can progress to cirrhosis
- Dx: Detection of serum HEV RNA >6 months
- May be mistaken for rejection

B: 5 months s/p OLT with portal hepatitis

C: 12 months s/p OLT with persistent hepatitis and fibrosis

Schlosser et al, J Hepatology 2012:56 Kamar et al, Gastroenterology, 2011:140

Case

Which of these organisms is safe to transplant?

T. cruzi

Naegleria

H₁N₁

Strongyloides

Case

Which of these organisms is safe to transplant?

T. cruzi

Naegleria

H1N1

Strongyloides

Chin-Hong et al, Am J Transplant. 2011; (11)4 Roy et al, Am J Transplant. 2014; (14)1 Kumar et al, Am J Transplant. 2010; (10)1 Chin-Hong et al, ATC 2013

